

Energy Storage Systems (ESS) UL 9540 ESS Standard UL 9540A Testing Standard

James Trudeau
UL LLC

Why Energy Storage?

Expanding the energy storage infrastructure.

The benefits of energy storage are driven by several dynamic factors.

Energy Storage Systems (ESS)

Expanding energy storage infrastructure

- Electric utility grid balancing and resiliency
- Eliminates renewable energy intermittency
- UPS for data centers
- Residential

Location Specific Considerations

Mixed Occupancy Building

Outdoor Cabinets

Dedicated ESS Building

Outdoors Near Building

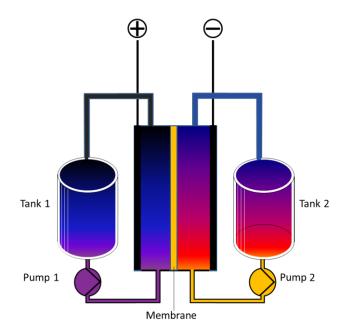
Rooftop Installations

Outdoors Remote

Modern Battery Technologies

Stationary battery technologies include

- Flow batteries
- Sodium-sulfur batteries
- Lithium-ion batteries



Energy density and cost drive new battery technologies

Flow Batteries

- Two tanks of liquids, pumped past a membrane between electrodes
- Electric current produced while both liquids circulate in their own respective space
- System includes pumps, sensors, control units, secondary containment

Lithium-ion Batteries

- Excellent energy density
- The current battery of choice
- Batteries and systems are readily available

Lithium-ion Batteries

- Lithium technologies differ and are continually evolving
- Lithium NMC Higher energy density, operating temperatures
- Lithium LFP Lower energy density, cost, operating temperatures

Risks and potential fire hazards vary between technologies

Li-ion Battery Cell Failure Modes

- Overheating and cell rupture is possible from:
 - Overcharging
 - Short circuits
 - Manufacturing defects
- Overheated cell can vent flammable gas
- Ignition source creates fire/explosion
- Lithium-ion batteries burn at 1500°C

Thermal runaway in one cell can readily spread to adjacent cells

FIRE SAFETY APPROACH

Installation Codes

NEC: National Electric Code (NFPA 70)

NFPA 855: Standard for the Installation of

Stationary Energy Storage Systems

ICC: The International Fire Code, International

Residential Code

Battery Safety Certification

UL 1642: Lithium Batteries

UL 1973: Batteries for Use in Stationary, Vehicle

Auxiliary Power and Light Electric Rail (LER)

Applications

UL 9540: Energy Storage Systems and Equipment

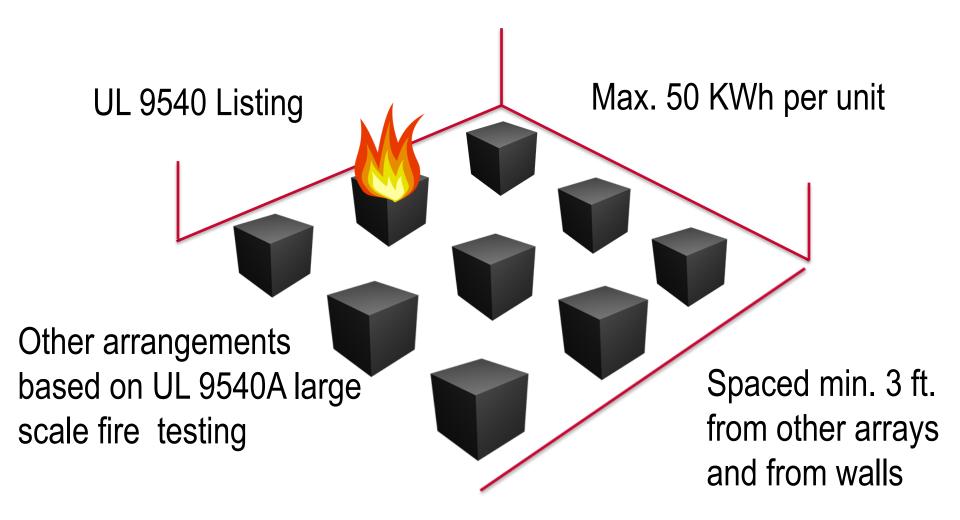
Testing for Performance **UL 9540A:** Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems

26 Major ESS Fires in South Korea 2017 - 2019

ESS System Explosion in AZ

Thermal Runaway - 25 Lithium-Ion Cells

Thermal Runaway - 25 Lithium-ion Cells


Let's do the math...

- A single 18650 Li-lon cell is ~ 10 WH
- 25 cells is ~ 250 WH
- A typical ESS module has 3,100 WH
- A typical rack has 10 modules for 31,000 WH
- This typical rack has over 120 times more energy than the 25 cell example in the video

IFC 2021 / NFPA 855

Listing, Size, Separation, MAQ

Max. 600 KWh aggregate/fire area

What You Need to Know About UL 9540A Fire Testing

2018 IFC Large Scale Fire Testing

The fire code official can approve the following installations based on large-scale fire testing:

- Increased array (unit) size
- Reduced spacing to adjacent units and/or walls
- Increased MAQ in a fire area

Testing to be conducted by an approved test lab and show:

- A fire in one unit will not propagate to an adjacent unit
- A fire in one unit will be contained within the test room
- UL 9540A was developed to conduct these fire propagation tests

2021 IFC specifies UL 9540A for this testing

UL 9540A Test Method

Scope

- Evaluate fire characteristics of a battery ESS that undergoes thermal runaway.
- Artificially forces cells into thermal runaway (if possible)
- Evaluates/documents the resulting fire/explosion characteristics
- Test results used to determine fire and explosion protection required for an installation

UL 9540A Testing Methodology

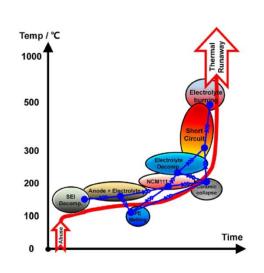
Cell Level Test

Module Level Test

Unit Level Test

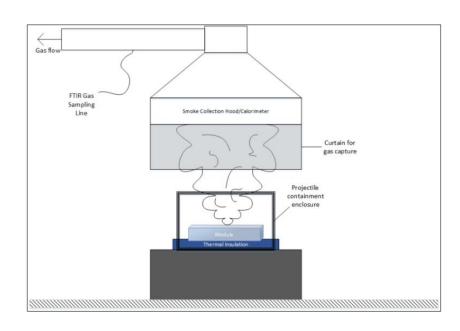
Installation Level Test

- · Whether cell can exhibit thermal runaway
- Thermal runaway characteristics
- Gas composition (flammability)
- Propensity for propagation of thermal runaway
- Heat and gas release rates (severity/duration)
- Flaming/deflagration hazards
- Evaluation of fire spread
- Heat and gas release rates (severity/duration)
- Deflagration hazards
- Re-ignition hazards
- Effectiveness of fire protection system(s)
- Heat and gas release rates (severity/duration)
- Deflagration hazards
- Re-ignition hazards


UL 9540A Cell Level Testing

Purpose:

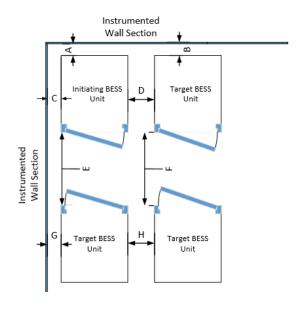
- Determine if thermal runaway can be induced,
- If so, document thermal runaway methodology, instrumentation,
- Determine cell surface temp at venting and thermal runaway,
- Measure gas generation and composition.

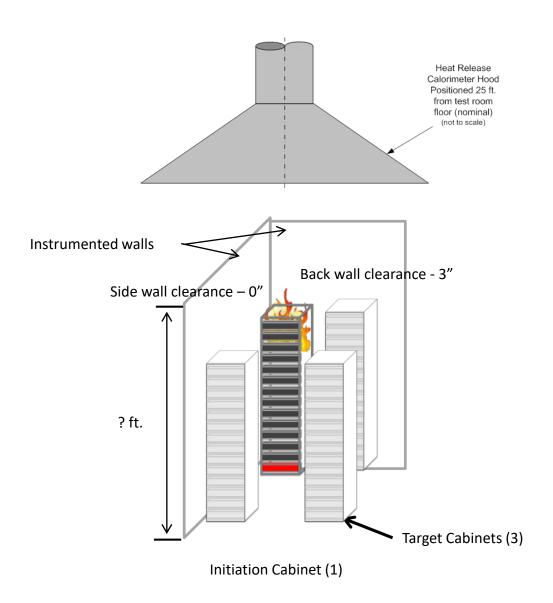


UL 9540A Module Level Testing

Purpose:

- Evaluate thermal runaway propagation within a module,
- Develop data on heat release rate and vent gas generation rate and composition,
- Document fire and deflagration hazards.




UL 9540A Unit Level Testing

- Document thermal runaway progression within the unit,
- Document if flaming occurs outside the unit,
- Measure heat and gas generation rates,
- Measure surface temperatures and heat fluxes in target units,
- Measure surface temperatures and heat fluxes on walls.

UL 9540A Unit Level Testing

UL 9540A Unit Level Performance

Acceptable results:

- No flaming outside the unit under test *
- No explosion hazard observed
- Maximum temperatures on target units ≤ the vent temperature in the cell level test, and
- Maximum surface wall temperature rise ≤ 97 °C (175 °F).

* If flaming is observed, the test will be conducted with a manufacturer recommended automatic sprinkler system or other fire protection system present.

UL 9540A Installation Level Testing (If Required)

Assesses the effectiveness of the fire mitigation methods:

Fire mitigation methods can include:

- Ceiling mounted automatic sprinklers,
- Alternate extinguishing system,
- Designed fire protection plan (a combination of fire detection, suppression, containment methods).

Questions/Discussion on UL 9540A Large Scale Fire Testing

Questions?

For further information please contact:

James Trudeau

Global Business Development Manager

+1-847-323-9869

James.Trudeau@ul.com

Jody Musial

Regional Sales Manager

+1-469-642-8124

Jody.Musial@ul.com

